DDE-BIFTOOL state-dependent delays sd-demo

This demo is an illustrative example, showing how to perform bifurcation analysis for a system with state-dependent delays.

The demo shows

% (c) DDE-BIFTOOL v. 3.1.1(20), 11/04/2014

Contents

Differential equations

The differential equations for this example are

$$\begin{array}{l}
\frac{\mathrm{d}}{\mathrm{d} t}x_1(t)=\frac{1}{p_1+x_2(t)}\left(1-p_2x_1(t)x_1(t-\tau_3)
x_3(t-\tau_3)+p_3x_1(t-\tau_1)x_2(t-\tau_2)\right),\\
\frac{\mathrm{d}}{\mathrm{d} t}x_2(t)=\frac{p_4 x_1(t)}{p_1+x_2(t)}+
        p_5\tanh(x_2(t-\tau_5))-1,\\
\frac{\mathrm{d}}{\mathrm{d} t}x_3(t)=p_6(x_2(t)-x_3(t))-p_7(x_1(t-\tau_6)-x_2(t-\tau_4))e^{-p_8 \tau_5},\\
\frac{\mathrm{d}}{\mathrm{d} t}x_4(t)=x_1(t-\tau_4)e^{-p_1 \tau_5} -0.1,\\
\frac{\mathrm{d}}{\mathrm{d} t}x_5(t)=3(x_1(t-\tau_2)-x_5(t))-p_9,
\end{array} $$

where $\tau_1$ and $\tau_2$ are constant delays and

$$
\begin{array}{l}
\tau_3=2+p_5\tau_1x_2(t)x_2(t-\tau_1),\\
\tau_4=1-\frac{1}{1+x_1(t)x_2(t-\tau_2)},\\
\tau_5=x_4(t),\\
\tau_6=x_5(t).
\end{array}
$$

This system has five components $(x_1,\ldots,x_5)$, six delays $(\tau_1,\ldots,\tau_6)$ and eleven parameters $(p_1,\ldots,p_{11})$, where $p_{10}=\tau_1$ and $p_{11}=\tau_2$.

clear;                           % clear variables
close all;                       % close figures
addpath('../../ddebiftool/');    % add ddebiftool folder to path
%#ok<*ASGLU,*NOPTS,*NASGU>

First step: the definition of user-defined functions, see sd_demo_funcs.html