Minimal demo - Normal forms of Hopf bifurcations
This part creates the computations of normal form coefficients along Hopf bifurcations, requiring theextension ddebiftool_extra_nmfm. This demo requires minimal_demo_stst_psol.html to have run beforehand.
(c) DDE-BIFTOOL v. 3.1.1(74), 31/12/2014
Contents
%#ok<*SAGROW> hopfcurves={hopf,hopf1}; ind_hoho=0; for i=1:length(hopfcurves)
Compute Lyapunov coefficient L1 along Hopf curves
[L1{i},L1low]=HopfLyapunovCoefficients(funcs,hopfcurves{i}); fprintf('maximal error of L1 along hopf branch=%g\n',norm(L1{i}-L1low,'inf'));
maximal error of L1 along hopf branch=2.0088e-09
maximal error of L1 along hopf branch=3.44257e-09
Hopf bifurcation changes criticality
Detect generalized Hopf bifurcation
[genh{i},genhlow,hopfref{i},ind_genh(i)]=GeneralizedHopfNormalform(funcs,hopfcurves{i},... find(diff(sign(L1{i}))~=0,1)+(0:1)); fprintf(['Generalized Hopf point at (b,tau)=(%g,%g)\n',... 'with L1=%g, L2=%g,\n',... 'L1 error est=%g, L2 error est=%g.\n'],... genh{i}.parameter(indb),genh{i}.parameter(indtau),... genh{i}.nmfm.L1,genh{i}.nmfm.L2,... abs(genh{i}.nmfm.L1-genhlow.nmfm.L1),abs(genh{i}.nmfm.L2-genhlow.nmfm.L2));
Bisection residual: res(1)=0.0193873, res(2)=-0.00850967 Bisection: new residual=0.00556438 Bisection: new residual=-0.00143977 Bisection: new residual=0.00207033 Bisection: new residual=0.000317312 Bisection: new residual=-0.000560717 Bisection: new residual=-0.000121575 Bisection: new residual=9.79013e-05 Bisection: new residual=-1.18288e-05 Generalized Hopf point at (b,tau)=(0.0369058,14.8349) with L1=-1.18288e-05, L2=-1.49612, L1 error est=3.48683e-10, L2 error est=0.000216606.
Bisection residual: res(1)=0.00488743, res(2)=-0.018094 Bisection: new residual=-0.00649218 Bisection: new residual=-0.00077775 Bisection: new residual=0.00206062 Bisection: new residual=0.000642925 Bisection: new residual=-6.70357e-05 Bisection: new residual=0.000288038 Bisection: new residual=0.000110526 Bisection: new residual=2.17533e-05 Generalized Hopf point at (b,tau)=(0.0378536,6.08046) with L1=2.17533e-05, L2=-0.587593, L1 error est=1.35718e-09, L2 error est=0.00074193.
Compute stability along Hopf curve
This shows that there are several HopfHopf interactions: detect them and compute their normal form.
[nunsth{i},dum,dum,hopfref{i}.point]=GetStability(hopfref{i},'funcs',funcs,... 'exclude_trivial',true,'locate_trivial',@(p)[-1i*p.omega,1i*p.omega]); %#ok<ASGLU> ind_hh=find(abs(diff(nunsth{i}))==2); for k=1:length(ind_hh) ind_hoho=ind_hoho+1; [hoho{ind_hoho},hoho_low]=HopfHopfNormalform(funcs,hopfref{i},ind_hh(k)+(0:1)); fprintf(['Normal form coefficients of Hopf-Hopf point\n',... 'at (b,tau)=(%g,%g) with omega1=%g, omega2=%g:\n'],... hoho{ind_hoho}.parameter(indb),hoho{ind_hoho}.parameter(indtau),... hoho{ind_hoho}.omega1,hoho{ind_hoho}.omega2); disp(hoho{ind_hoho}.nmfm); fprintf('Error of normal form coefficients: %g\n',... norm(struct2array(hoho{ind_hoho}.nmfm)-struct2array(hoho_low.nmfm),'inf')); end
Bisection residual: res(1)=0.000694535, res(2)=-0.00146838 Bisection: new residual=-0.000386969 Bisection: new residual=0.000153767 Bisection: new residual=-0.000116604 Bisection: new residual=1.85803e-05 Bisection: new residual=-4.90122e-05 Bisection: new residual=-1.5216e-05 Bisection: new residual=1.68216e-06 Normal form coefficients of Hopf-Hopf point at (b,tau)=(0.354452,8.72869) with omega1=1.09756, omega2=0.708364: g2100: 0.1385 + 0.1232i g1011: 0.3121 + 0.2776i g1110: -0.3656 + 0.2017i g0021: -0.2059 + 0.1136i theta: -1.5155 delta: -2.6393 Error of normal form coefficients: 2.15019e-08 Bisection residual: res(1)=-0.00435055, res(2)=0.000946688 Bisection: new residual=-0.00171931 Bisection: new residual=-0.000390537 ...
Bisection residual: res(1)=-0.00159524, res(2)=0.00260849 Bisection: new residual=0.00052094 Bisection: new residual=-0.000533554 Bisection: new residual=-5.41024e-06 Bisection: new residual=0.000257989 Normal form coefficients of Hopf-Hopf point at (b,tau)=(0.355063,8.72902) with omega1=0.708358, omega2=1.09771: g2100: -0.2055 + 0.1132i g1011: -0.3653 + 0.2012i g1110: 0.3106 + 0.2773i g0021: 0.1380 + 0.1233i theta: -2.6465 delta: -1.5114 Error of normal form coefficients: 2.75342e-09
end
Save and continue
For continuation of folds and torus bifurcations of periodic orbits, see minimal_demo_extra_psol.html. Final results in minimal_demo_plot_2dbif.html.
save('minimal_demo_extra_nmfm_results.mat')