Continuation of homoclinic connections
(c) DDE-BIFTOOL v. 3.1.1(75), 31/12/2014
(requires running demo1_psol.html first to create branch5)
Contents
%#ok<*ASGLU,*NOPTS,*NASGU> %
Cutting a long-period periodic orbit
The 7th last point along the branch of periodic orbits branch5 was close to a homoclinic connection, consisting of two loops. Its period is also not too long such that the coarse mesh gives still an accurate solution. Using the (added) routines to compute homoclinic solutions, we correct each of the two loops to a homoclinic orbit, thereby obtaining also some stability information of the steady state point. We take the first half of the profile and rescale it to . Then we convert it into a homoclinic/heteroclinic structure (point), and correct it with a Newton iteration (p_correc).
hcli1=psol; hcli1.mesh=hcli1.mesh(1:65); hcli1.profile=hcli1.profile(:,1:65); hcli1.period=hcli1.period*hcli1.mesh(end); hcli1.mesh=hcli1.mesh/hcli1.mesh(end); hcli1=p_tohcli(funcs,hcli1) % convert it to a point of homoclinic structure mh=df_mthod(funcs,'hcli'); [hcli1,success]=p_correc(funcs,hcli1,ind_a21,[],mh.point) % and correct it
hcli1 = kind: 'hcli' parameter: [0.5000 -1 1 2.3460 0.2000 0.2000 1.5000] mesh: [1x61 double] degree: 4 profile: [2x61 double] period: 110.3614 x1: [2x1 double] x2: [2x1 double] lambda_v: 0.3142 lambda_w: 0.3142 v: [2x1 double] w: [2x1 double] alpha: 1 epsilon: 2.7545e-04 hcli1 = kind: 'hcli' parameter: [0.5000 -1 1 2.3460 0.2000 0.2000 1.5000] mesh: [1x61 double] degree: 4 ...
The second half of the profile
We apply the same procedure on the second half of the profile.
hcli2=psol; hcli2.mesh=hcli2.mesh(81:end-16); hcli2.profile=hcli2.profile(:,81:end-16); hcli2.mesh=hcli2.mesh-hcli2.mesh(1); hcli2.period=hcli2.period*hcli2.mesh(end); hcli2.mesh=hcli2.mesh/hcli2.mesh(end); hcli2=p_tohcli(funcs,hcli2); [hcli2,success]=p_correc(funcs,hcli2,ind_a21,[],mh.point); figure(14);clf;subplot(2,1,1); p_pplot(hcli1); xlabel('t/period');ylabel('x1, x2'); subplot(2,1,2); p_pplot(hcli2); xlabel('t/period');ylabel('x1, x2');
Figure: time profiles of both connection loop separately
Homoclinic profiles of the two loops depicted in figure demo1_psol.html#longperiod, now computed using the defining system for homoclinic/heteroclinic connections.
Mesh Refinement
We recompute the first homoclinic orbit, using 70 intervals, and correct this point.
hcli1=p_remesh(hcli1,4,70); [hcli1,success]=p_correc(funcs,hcli1,ind_a21,[],mh.point)
hcli1 = kind: 'hcli' parameter: [0.5000 -1 1 2.3460 0.2000 0.2000 1.5000] mesh: [1x281 double] degree: 4 profile: [2x281 double] period: 112.3621 x1: [2x1 double] x2: [2x1 double] lambda_v: 0.3142 lambda_w: 0.3142 v: [2x1 double] w: [2x1 double] alpha: 1 epsilon: 2.7545e-04 success = 1
Continuation of homoclinic in two parameters
If we free a second parameter, we can continue this homoclinic orbit with respect to two free parameters. As a second free parameter, we choose . We first create a default branch of homoclinic orbits, add hcli1 as a first point, perturb it, and add the corrected perturbation as a second point.
figure(15); branch6=df_brnch(funcs,[ind_a21 ind_taus],'hcli'); branch6.point=hcli1; hcli1.parameter(ind_taus)=1.49; [hcli1,success]=p_correc(funcs,hcli1,ind_a21,[],mh.point); branch6.point(2)=hcli1; [branch6,s,r,f]=br_contn(funcs,branch6,19); xlabel('a21');ylabel('\tau_s');
Figure: Two parameter bifurcation diagram with homoclinic connection
save('demo1_hcli_results.mat');